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Abstract—Electric power system reliability is needed to guar-
antee the success of space exploration missions for manned
and unmanned spacecraft. Understanding the behavior of these
electric systems is essential to determine the safe operating
conditions, and subsequently, prevent undesired conditions that
may cause system-wide blackouts, leaving the spacecraft in
a vulnerable position. This study uses bifurcation analysis to
determine the behavior of DC spacecraft electric power systems
to identify major causes of voltage instability.

I. INTRODUCTION

NASA’s current focus centers on developing high power

vehicles to travel into deep space. The performance and

stability of the onboard electric power systems, which can

be considered islanded microgrids, will play a critical role in

the success of these missions. Interactions between load and

source subsystems will impact power quality and potentially

cause momentary blackouts, malfunctions, and premature fail-

ures [1]. Therefore maintaining stability of such systems is of

great importance.

Unlike terrestrial electric power systems with bulk power

generation, spacecraft and aircraft have source and load power

levels that are closely matched, making them very susceptible

to instability, and the dynamic behavior of such systems needs

to be studied to understand the operating conditions that

achieve safe and reliable operation.

The designs for spacecraft electric power systems are based

on photovoltaic (PV) power generation, distributed energy

storage devices, distribution lines, and various resistive, con-

stant power and AC loads. Several types of electric power

system design and control approaches have been investigated

for spacecraft power systems [2], [3]. Differences in these

electric power systems typically involve their schemes for

voltage and power regulation. For example, batteries can be

connected directly to the distribution system, or regulated

through DC/DC converters. Similarly, PV systems can use

sequential shunting techniques, or use more sophisticated

regulation including maximum power point tracking (MPPT).

Depending on the requirements of the mission, various types

of loads may need to be powered.

For the application of space electric power systems, there

are a few notable factors that make maintaining stability

challenging. First, as vehicles travel into deep space the irradi-

Fig. 1. Conceptual schematic diagram of DC microgrid onboard a spacecraft

ance available to PVs decreases, limiting the total generating

capacity of the system. Autonomous systems currently lack the

ability to reliably track PV capacity in real-time due to unex-

pected damage. In addition, distributed energy storage batteries

must be carefully controlled to regulate bus voltage for the

loads. Adjustments in load impedance, generation capacity,

and degradation cause frequent changes in system stability that

are difficult to monitor. Lastly, interactions between source

and load subsystems may cause unexpected conditions for

instability depending on the design parameters of a particular

system.

This paper focuses on applications that use regulated PV

and battery sources to provide power to the loads. The

regulated sources will allow for improved controllability and

efficiency of the power flow. A wide range of voltage regu-

lation techniques have been used on spacecraft electric power

systems. Each control implementation strongly affects the

stability characteristics of the electric power system during

operation. In order to understand this behavior an approximate

model of the electrical distribution network is developed and

analyzed to generate the nonlinear dynamics of the system.

To construct this analytical model for the distribution electrical

power network, individual subsystem models [1], [4], [5] were

used. A conceptual model of such a DC power system with

source and load subsystems is shown in Fig. 1. Based on this

model, bifurcation analysis is used to calculate the operating

conditions that will satisfy the stability requirements [6]–[8].

Bifurcation analysis studies how variations in system pa-
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rameters change equilibria and the qualitative behavior of the

dynamical system [9]. The bifurcation point refers to an op-

erating condition where the stability of the system changes as

one or more parameters vary [10]. This study uses bifurcation

analysis to establish necessary conditions for stability of a

DC space electric power system. In particular, the effects of

variations in power generated by solar panels, power consumed

by the loads, and battery energy storage on the equilibria and

voltage stability of the system are examined.

Presently, supervision of spacecraft electric power systems

are achieved from ground stations on earth by human oper-

ators. Communication delays for missions beyond low earth

orbit (LEO) are estimated to be up to 44 minutes round trip

[11]. Due to the potential dangers of these communication la-

tencies, many of the monitoring functions currently conducted

on the ground must be implemented in autonomous software

onboard the spacecraft that is capable of intelligent decision-

making. The findings of this paper can be used to develop

an approach for real-time stability monitoring of DC electric

power systems for autonomous spacecraft operations. In future

work, this analysis will be verified using a real hardware

testbed.

II. DC ELECTRIC POWER SYSTEM MODEL

To create a general model of a DC microgrid for spacecraft

electric power system, it is necessary to understand each

component’s individual dynamic behavior. The components

considered here include PV sources under MPPT, parallel bat-

teries under droop control, distribution lines, bus capacitance,

loads (active, resistive, and inductive) and DC/DC isolating

converters. Modeling the behavior of the power source and

load subsystems is most crucial because the interactions be-

tween them defines the system’s stability properties.

A. PVs and Maximum Power Point Tracking

PV sources are often connected to the electrical distribution

network through a regulating device that defines the dynamic

behavior of the source [12]. PVs are often controlled via

MPPT through a DC/DC converter, where the objective is to

maximize the power output. The PV cell can be modeled as

a current source (photo-current, Iph) that is dependent on the

incident solar radiation (insolation) [13]. The entire cell can

be modeled as a P-N junction, and therefore behaves as a

diode. Practically, there is some resistance Rs in the path of

the junction. Also some of the electrons and holes recombine

before reaching the electrodes at the main bus. This has the

effect of shunting a part of the output current and can be

modeled using a parallel resistance Rsh. Thus, a PV cell can

be modeled by the equivalent circuit represented in Fig. 2. A

group of connected cells are used to create the entire PV array

and can be approximated by modifying the single cell model.

The diode current can be calculated as [13]:

iD = I0(e
Avd − 1) (1)

where I0 is the saturation current of the diode, A = q
γkTe

,

q is the charge of the electron (= 1.6 × 10−19 coulombs),

Fig. 2. Equivalent 1-diode model of a PV cell

γ is the diode ideality factor, k is Boltzmann’s constant (=
1.38× 10−23 J/K), and Te is the absolute temperature. Then,

the current flow through the cell is characterized by:

ipv = Iph − iD − ish (2)

ipv = Iph − I0(e
Avd − 1)− vD

Rsh
. (3)

The voltage over the diode can be defined by:

vD = vpv + ipvRs, (4)

By substituting equation (4) into (3), the cell current can be

expressed by:

ipv = Iph − I0(e
A(vpv+ipvRs) − 1)− vpv + ipvRs

Rsh
. (5)

Then, the single cell model can be extended to approximate

the full array [14]:

ipv = NpIph −NpI0

(
e
A(

vpv
Ns

+
ipvRs

Np
) − 1

)
− Np

Rsh

(
vpv

Ns
+

ipvRs

Np

)
(6)

where Np and Ns are the number of parallel and series cells

respectively.

The full PV array model of equation (6) must be solved

numerically using a Newton-Raphson algorithm. Solving this

equation for different photo-currents (i.e. changing solar con-

ditions) yields the I-V curves and, subsequently, P-V curves.

The I-V and P-V curves are shown in Figs. 3, and 4.

Many algorithms have been implemented for the MPPT,

including perturb and observe (P&O), hill-climb, and incre-

mental conductance (IncCond) [15] to name a few. In general,

these algorithms successfully condition the PV to operate near

the maximum power point, unaffected by the behavior of the

other subsystems. Therefore, the maximum power point (peak

of the P-V curves) for each level of solar irradiation are used

to model the PV array as a constant power source.

B. Batteries and Droop Control

The distributed batteries are responsible for maintaining bus

voltage within acceptable limits. The effects of other subsys-

tems, such as the PV array and loads, creates challenges for

the batteries to maintain the proper bus voltage. In this study,

droop control, a common method in microgrid applications, is

used to regulate the bus voltage. It should be noted that other

types of control schemes can also be used, and these may
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Fig. 3. The I-V characteristics of a solar array
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Fig. 4. The P-V characteristics of a solar array

have a significant impact on the system’s dynamic behavior

and therefore, its stability.

The main concept of droop control is to perform load

sharing while accounting for the generating capacity of each

load so that no source becomes overloaded. This paper uses the

model for distributed batteries operating under droop control

from [1]. In this model, a battery connected to the bus through

a power converter interface can be viewed as an ideal voltage

source with a controlled (virtual) droop resistance, Vi and

Rvi respectively. The source connects to the system over a

distribution line, that can be modeled using a resistance, Rli,

and inductance Lli. In general, Rvi � Rli, and, thus, it may

be assumed Rvi ≈ Rvi +Rli.

For n batteries in parallel, the reference voltage Vref is set

for all sources such that

Vref ≈ V1 ≈ V2 ≈ · · · ≈ Vn. (7)

Then, it can be assumed that under normal droop conditions

Rv1

Ll1

≈ Rv2

Ll2

≈ · · · ≈ Rvn

Lln

(8)

so that a single term can be used to represent the approximated

equivalent resistance and inductance by taking the average of

each of the source parameters

Rd

Ld
=

1

n

n∑
j=1

Rvj

Llj

. (9)

This approximation helps reduce the n differential equations

to a single differential equation. The equivalent (approximate)

model simplifies the stability analysis with only minor effects

on accuracy.

For a single droop controlled source k, the dynamics can

be modeled using the differential equation [1]

dik
dt

=
1

Llk

(Vref − vbus)− Rdk

Ltk

. (10)

To reduce the behavior of the entire microgrid to a single

differential equation, the total current provided by all of the

droop controlled sources can be defined as

is ≈ i1 + i2 + · · ·+ in. (11)

Then the differential equation for the sum of sources becomes

dis
dt

=

⎛
⎝ n∑

j=1

1

Llj

⎞
⎠ (Vref − vbus)−

n∑
j=1

Rdj

Llj

ij . (12)

Next, using the approximation from equation (8) we can

assume

dis
dt
≈

⎛
⎝ n∑

j=1

1

Llj

⎞
⎠ (Vref − vbus)− Rd

Ld
is. (13)

Equation (13) can be further simplified by multiplying both

sides of the equation by

Leq =
1

n∑
j=1

1

Llj

(14)

that produces

dis
dt

=
1

Leq
[(Vref − vbus)−Reqis] (15)

where

Req = Rd
Leq

Ld
. (16)

The droop controlled batteries can be modeled using equa-

tion (15), which can be viewed as a voltage source in series

with an inductor and resistor.

C. Constant Power Loads

The constant power loads (CPL) are modeled as current

sinks, where the constant current consumed is equal to the

CPL power divided by the CPL voltage. An isolating DC/DC

converter connects the loads to the main bus to regulate the

source subsystem voltage to the CPL voltage. It is assumed

that the power input into the converter approximately equals

the power output. Therefore the DC/DC converter can be

modeled as a CPL as long as the input voltage is greater than

or equal to the required voltage of the loads V0. If the input

voltage falls below V0, the converter acts as a passive load.

Fig. 5 shows the behavior of the DC/DC converter. In addition,

in [16], [17] active and passive damping is shown to be useful
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Fig. 5. Dynamic behavior of the DC/DC converter

Fig. 6. DC/AC inverter generating constant power load characteristics

in controlling the converter output for poorly behaved loads.

In order to maintain the simplicity of the analysis, only the

CPL behavior of the converters is considered and the behavior

of the DC/DC converters can be approximated as

i(v) =
P

v
. (17)

Other types of spacecraft loads require AC power such as

motors and pumps. Under tightly regulated control, these loads

also behave as CPLs [16]. In the case of an electric motor, the

angular velocity is accurately controlled by the DC/AC inverter

(as shown in Fig. 6). Due to the linear relationship between

speed and torque, a given operating speed corresponds to a

single value of torque. Power is equal to the product of the

speed and torque, and electric motors can be considered as

constant power loads [18].

III. STABILITY FRAMEWORK

Now that each subsystem model is developed, an approxi-

mate model can be written for the entire spacecraft microgrid.

Integrating the components of the system generates the circuit

shown in Fig. 7. The dynamic equations for the full system

are

dis
dt

=
1

Leq
(Vref − vbus −Reqis) (18)

dvbus
dt

=
1

C
(is − vbus

R
− P

vbus
) (19)

Fig. 7. Equivalent model for droop controlled DC microgrid

where the net power P , is defined as the difference between the

power consumed and the power generated by the PV arrays:

P = PL − PPV . (20)

For the sake of clarity, P represents the amount of power

that exceeds the maximum generation capabilities of the PV

arrays, and this power must be supplied from the remaining

battery power. Next, C represents the lumped sum of the input

capacitances from the isolating DC/DC converters as well as

the sum of the capacitor banks attached to each bus.

To obtain the equilibrium points of this system, the right

hand side (RHS) of the differential equations should be set

equal to zero. Solving for the two fixed points yields

[I∗1 , v
∗
bus1 ] =

(
Vref − v∗bus1

Rd
,
RVref − a

2(Rd +R)

)
(21)

[I∗2 , v
∗
bus2 ] =

(
Vref − v∗bus2

Rd
,
RVref + a

2(Rd +R)

)
(22)

where a =
√

R2V 2
ref − 4PRRd(Rd +R).

The stability of each fixed point can be determined by

evaluating the eigenvalues of the of the Jacobian matrix (J)

of the system.

J =

[−Req

Leq
− 1

Leq
1
C

1
C ( P

v∗2
busi

− 1
R )

]
(23)

The first fixed point, [I∗1 , v
∗
bus1

] produces eigenvalues of op-

posite signs resulting in an unstable saddle-node equilibrium.

The second fixed point, [I∗2 , v
∗
bus2

] produces a stable fixed

point when the determinant of J is positive (Δ > 0), and

the trace of J is negative (τ < 0). Solving both inequalities

results in stability when C >
Leq

R2
eq

. The case where C ≤ Leq

R2
eq

is

discussed in the next section. Under this design consideration,

the maximum net power that can be supported by the system

is

P <
RV 2

ref

4Req(Req +R)
= Pmax (24)

where Pmax is the maximum power that can be supported

by the batteries. This is the minimum power value for which

the parameter a is real and a meaningful solution exists. The

bifurcation diagram in Fig. 8 shows the behavior of the two

fixed points as a function of net power P . The following

electrical network parameters are used for the simulation:
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Fig. 8. Bifurcation diagram of the approximate model

Vref = 120(V ), R = 1000(Ω), Req = 0.5(Ω), Leq =
500(μH), C = 3(mF ).

A voltage bifurcation diagram that relates voltage to active

power is shown in Fig. 8, also known as a nose curve.

This curve has two main branches; the top branch, shown

with a solid blue line, indicates all stable solutions whereas

the bottom branch, a red dashed line, indicates all unstable

solutions. The point where the two branches meet is known as

the bifurcation point or voltage instability point corresponding

to the loading level at which the two solutions coalesce into

one [19]. This curve determines the stability characteristics

of the electric power system for a given set of operating

conditions, even when small disturbances occur. Moreover,

the bifurcation curve reveals what operational limits must be

avoided to prevent instability. For this bifurcation curve, it

can be seen that the electric power system considered here

is unstable when P > Pmax. For example, increasing the

CPL load PL so that PL − PPV > Pmax causes the system

to be unstable. Such a condition can result in large voltage

oscillations or even total voltage collapse of the system.

The system operator (human or computer) can use this

information as an analytical tool to ensure that the electrical

power system is operating within the stable region. Methods

such as parameter estimation [20] can be used with sensor

measurements to accurately approximate the network variables

at any point during a mission, then using the stability frame-

work, judgments could be made as to how close the system is

to a point of instability. Periodic updates of the stability status

is a highly beneficial resource to the power controller in order

to prevent overloading and other causes of voltage failure.

IV. SIMULATION RESULTS

Next the bifurcation can be used to gain an understanding

of the sensitivity to different system parameters and variables.

Observing several ”what-if ” scenarios acts as a contingency

analysis study for events that could occur in the electrical

power network. In this section, four credible scenarios are

addressed. The first three scenarios involve a static phe-

nomenon known as a saddle-node bifurcation. Whereas the

fourth scenario results in a dynamic phenomenon known as a

Hopf bifurcation.

A. Effect of PV Generation

Assuming that there are two equally sized solar arrays on the

spacecraft, the effect of a fault causing an outage of one of the

arrays can be observed in Fig. 9. In the bifurcation diagram,

voltage is displayed as a function of the excess power. The

loss of a single array would cause the fixed point to move

along the bifurcation curve (from point A) to the right for the

exact amount of PV power loss due to the failure (to point B).

As a result, the system experiences a voltage drop. This event

causes the power that needs to be supported by the battery

outputs to increase to restore the voltage. The example in

Fig. 9 shows the effect of losing half of the total PV generation

capability in the system. Here the power P remains below

Pmax and hence, the system will remain stable. Otherwise,

the system would be come unstable and appropriate corrective

actions such as load shedding can be used to maintain or

restore the stability.
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Fig. 9. Electrical power system operating point before and after PV array
failure

B. Effect of Load Resistance

Another parameter that affects the stability of the electrical

network is the load resistance R. Equation (24) shows that for

R � Req the stability limit does not change significantly for

small changes in R. If the resistive load becomes quite small

(around two orders of magnitude of Req), then the bifurcation

curve changes as shown in Fig. 10. This example shows

the resistance change from R1 = 1000(Ω) to R2 = 2(Ω).
The lack of resistive load in the system with respect to the

equivalent droop resistance causes the voltage to drop from

point A to point B. Given that the system is still stable when

operating below Pmax, it is able to restore its voltage through

a corrective action such as load shedding (operating point

moves from point B to point C). This introduces an important

feature in that the stability of the system is not the only

operating condition that needs to be considered. Each of the

CPLs in the electrical network has a minimum voltage that

is required for operation. Therefore vbus must be greater than
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the minimum allowable CPL voltage, even if the system is

stable. For example, if the minimum required CPL voltage is

V0 = 90(V ), as shown in Fig. 10, then the operating voltage

must remain above V0 for the CPLs to function properly.
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Fig. 10. Bifurcation curves with changing load resistance R

C. Effect of Droop Resistance

Next, the effect of Req on the bifurcation curve is shown

in Fig. 11. The first bifurcation curve shows equivalent droop

resistance Req1 = 0.5, and the second with Req2 = 0.1. Note

that as the equivalent droop resistance decreases, the maximum

operating load increases drastically from 7.2kW (point A)

to 18kW (point B). Therefore, it is beneficial for the power

electrical system controller to minimize the equivalent droop

resistance of the energy storage devices. This will allow the

sources to support the largest load demands.
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Fig. 11. Bifurcation curves with changing equivalent droop resistance Req

D. Effect of Capacitance, Inductance, and Droop Resistance

Thus far, three scenarios have been addressed where total

capacitance, equivalent inductance, and droop resistance sat-

isfy C >
Leq

R2
eq

. This condition guarantees the determinant of

the Jacobian matrix remains positive (Δ > 0) and its trace

remains negative (τ < 0). Such condition results in a saddle-

node bifurcation, that occurs when the number of equilibrium

points changes as a parameter changes [21].

An alternative condition implies the total capacitance, equiv-

alent inductance, and droop resistance satisfy C ≤ Leq

R2
eq

. This

condition indicates that the system no longer maintains Δ > 0
and τ < 0 for the entire range of real fixed points. Therefore,

the region of stability of the electrical power system may

shrink, and as a result, is stable for a narrower range of load

demand. This is due to a dynamic phenomenon known as a

Hopf bifurcation. The Hopf bifurcation condition occurs when

the number of equilibrium points remains unchanged, but the

eigenvalues of the Jacobian matrix are purely imaginary [21].

Analyzing the Jacobian matrix for the system with C =
3(mF ) shows that there are two eigenvalues in the left half

plane for the entire range of P examined. Therefore a saddle-

node bifurcation occurs at P ≈ 7.2(kW ). However, the

eigenvalues of the system with C = 1(mF ) move toward

the right half plane as the value of P increases and they

eventually cross the imaginary axis at P ≈ 6.4(kW ) when

τ ≥ 0, where the Hopf bifurcation occurs. The bifurcation

diagram of the system with the value of total capacitance

of C = 1(mF ) is shown in Fig. 13. This diagram reveals

how the bifurcation point moves from Pmax ≈ 7.2(kW ) to

Pmax ≈ 6.4(kW ), reflecting a decrease in the ability of the

system to maintain the power delivery to the system’s load.

Therefore it is important to design the electrical power system

with sufficient bus capacitance so that C >
Leq

R2
eq

across the

entire operating range of the system.
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Fig. 12. Eigenvalues of the Jacobian as a function of net power P

To summarize, each parameter of the electrical power sys-

tem plays an important role in the voltage stability character-

istics of the system. Stability analysis is an important element

in design as well as the online supervision of an electric

power system. Taking the stability into consideration during

the design process will ensure that the potential serviceable

load is maximized and that contingencies such as PV array

failures can be mitigated and effectively managed.
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V. CONCLUSION

This paper identifies the need for tracking the stability

of DC spacecraft electric power systems. The subsystem

dynamic behavior was used to create a mathematical model

for each electrical power component. Using the subsystem

models, an approximate model for the entire spacecraft electric

power system was developed. From this overall model, the

fixed points of the system were computed and their stability

analyzed. The bifurcation study shows how stability changes

with respect to the adjustment of system parameters and

operating conditions. Understanding the bifurcation process

allows the electric power system controller to avoid unstable

points during operation. Instabilities can lead to wide-scale

blackouts due to voltage oscillations and voltage collapse,

which put the success of any space mission at risk. Therefore

it is critical to accurately predict the bifurcations of spacecraft

power systems. The next step in this effort is to test the validity

of the model against a real hardware testbed. Once the model

is verified to a reasonable extent, the stability framework can

be developed into a software package that may provide useful

information to the electric power system controller.
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